Computer Science > Computer Vision and Pattern Recognition
[Submitted on 11 Jul 2023 (v1), last revised 20 May 2024 (this version, v4)]
Title:My3DGen: A Scalable Personalized 3D Generative Model
View PDF HTML (experimental)Abstract:In recent years, generative 3D face models (e.g., EG3D) have been developed to tackle the problem of synthesizing photo-realistic faces. However, these models are often unable to capture facial features unique to each individual, highlighting the importance of personalization. Some prior works have shown promise in personalizing generative face models, but these studies primarily focus on 2D settings. Also, these methods require both fine-tuning and storing a large number of parameters for each user, posing a hindrance to achieving scalable personalization. Another challenge of personalization is the limited number of training images available for each individual, which often leads to overfitting when using full fine-tuning methods. Our proposed approach, My3DGen, generates a personalized 3D prior of an individual using as few as 50 training images. My3DGen allows for novel view synthesis, semantic editing of a given face (e.g. adding a smile), and synthesizing novel appearances, all while preserving the original person's identity. We decouple the 3D facial features into global features and personalized features by freezing the pre-trained EG3D and training additional personalized weights through low-rank decomposition. As a result, My3DGen introduces only $\textbf{240K}$ personalized parameters per individual, leading to a $\textbf{127}\times$ reduction in trainable parameters compared to the $\textbf{30.6M}$ required for fine-tuning the entire parameter space. Despite this significant reduction in storage, our model preserves identity features without compromising the quality of downstream applications.
Submission history
From: Luchao Qi [view email][v1] Tue, 11 Jul 2023 17:53:43 UTC (19,899 KB)
[v2] Wed, 12 Jul 2023 05:11:23 UTC (19,816 KB)
[v3] Tue, 28 Nov 2023 01:45:17 UTC (32,877 KB)
[v4] Mon, 20 May 2024 08:17:21 UTC (15,827 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.