Computer Science > Cryptography and Security
[Submitted on 14 Jul 2023]
Title:TUSH-Key: Transferable User Secrets on Hardware Key
View PDFAbstract:Passwordless authentication was first tested for seamless and secure merchant payments without the use of passwords or pins. It opened a whole new world of authentications giving up the former reliance on traditional passwords. It relied on the W3C Web Authentication (WebAuthn) and Client to Authenticator Protocol (CTAP) standards to use the public key cryptosystem to uniquely attest a user's device and then their identity. These standards comprise of the FIDO authentication standard. As the popularity of passwordless is increasing, more and more users and service providers are adopting to it. However, the concept of device attestation makes it device-specific for a user. It makes it difficult for a user to switch devices. FIDO Passkeys were aimed at solving the same, synchronizing the private cryptographic keys across multiple devices so that the user can perform passwordless authentication even from devices not explicitly enrolled with the service provider. However, passkeys have certain drawbacks including that it uses proprietary end to end encryption algorithms, all keys pass through proprietary cloud provider, and it is usually not very seamless when dealing with cross-platform key synchronization. To deal with the problems and drawbacks of FIDO Passkeys, the paper proposes a novel private key management system for passwordless authentication called Transferable User Secret on Hardware Key (TUSH-Key). TUSH-Key allows cross-platform synchronization of devices for seamless passwordless logins with FIDO2 specifications.
Submission history
From: Sibi Chakkaravarthy S [view email][v1] Fri, 14 Jul 2023 17:09:46 UTC (1,058 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.