Computer Science > Computer Vision and Pattern Recognition
[Submitted on 16 Jul 2023 (v1), last revised 9 Oct 2024 (this version, v2)]
Title:Enforcing 3D Topological Constraints in Composite Objects via Implicit Functions
View PDF HTML (experimental)Abstract:Medical applications often require accurate 3D representations of complex organs with multiple parts, such as the heart and spine. Their individual parts must adhere to specific topological constraints to ensure proper functionality. Yet, there are very few mechanisms in the deep learning literature to achieve this goal.
This paper introduces a novel approach to enforce topological constraints in 3D object reconstruction using deep implicit signed distance functions. Our method focuses on heart and spine reconstruction but is generalizable to other applications. We propose a sampling-based technique that effectively checks and enforces topological constraints between 3D shapes by evaluating signed distances at randomly sampled points throughout the volume. We demonstrate it by refining 3D segmentations obtained from the nn-UNet architecture.
Submission history
From: Hieu Le [view email][v1] Sun, 16 Jul 2023 10:07:15 UTC (3,955 KB)
[v2] Wed, 9 Oct 2024 13:56:08 UTC (26,432 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.