Computer Science > Machine Learning
[Submitted on 21 Jul 2023]
Title:Random Separating Hyperplane Theorem and Learning Polytopes
View PDFAbstract:The Separating Hyperplane theorem is a fundamental result in Convex Geometry with myriad applications. Our first result, Random Separating Hyperplane Theorem (RSH), is a strengthening of this for polytopes. $\rsh$ asserts that if the distance between $a$ and a polytope $K$ with $k$ vertices and unit diameter in $\Re^d$ is at least $\delta$, where $\delta$ is a fixed constant in $(0,1)$, then a randomly chosen hyperplane separates $a$ and $K$ with probability at least $1/poly(k)$ and margin at least $\Omega \left(\delta/\sqrt{d} \right)$. An immediate consequence of our result is the first near optimal bound on the error increase in the reduction from a Separation oracle to an Optimization oracle over a polytope.
RSH has algorithmic applications in learning polytopes. We consider a fundamental problem, denoted the ``Hausdorff problem'', of learning a unit diameter polytope $K$ within Hausdorff distance $\delta$, given an optimization oracle for $K$. Using RSH, we show that with polynomially many random queries to the optimization oracle, $K$ can be approximated within error $O(\delta)$. To our knowledge this is the first provable algorithm for the Hausdorff Problem. Building on this result, we show that if the vertices of $K$ are well-separated, then an optimization oracle can be used to generate a list of points, each within Hausdorff distance $O(\delta)$ of $K$, with the property that the list contains a point close to each vertex of $K$. Further, we show how to prune this list to generate a (unique) approximation to each vertex of the polytope. We prove that in many latent variable settings, e.g., topic modeling, LDA, optimization oracles do exist provided we project to a suitable SVD subspace. Thus, our work yields the first efficient algorithm for finding approximations to the vertices of the latent polytope under the well-separatedness assumption.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.