Computer Science > Robotics
[Submitted on 26 Jul 2023]
Title:Reinforced Potential Field for Multi-Robot Motion Planning in Cluttered Environments
View PDFAbstract:Motion planning is challenging for multiple robots in cluttered environments without communication, especially in view of real-time efficiency, motion safety, distributed computation, and trajectory optimality, etc. In this paper, a reinforced potential field method is developed for distributed multi-robot motion planning, which is a synthesized design of reinforcement learning and artificial potential fields. An observation embedding with a self-attention mechanism is presented to model the robot-robot and robot-environment interactions. A soft wall-following rule is developed to improve the trajectory smoothness. Our method belongs to reactive planning, but environment properties are implicitly encoded. The total amount of robots in our method can be scaled up to any number. The performance improvement over a vanilla APF and RL method has been demonstrated via numerical simulations. Experiments are also performed using quadrotors to further illustrate the competence of our method.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.