Computer Science > Cryptography and Security
[Submitted on 1 Aug 2023]
Title:FLAIRS: FPGA-Accelerated Inference-Resistant & Secure Federated Learning
View PDFAbstract:Federated Learning (FL) has become very popular since it enables clients to train a joint model collaboratively without sharing their private data. However, FL has been shown to be susceptible to backdoor and inference attacks. While in the former, the adversary injects manipulated updates into the aggregation process; the latter leverages clients' local models to deduce their private data. Contemporary solutions to address the security concerns of FL are either impractical for real-world deployment due to high-performance overheads or are tailored towards addressing specific threats, for instance, privacy-preserving aggregation or backdoor defenses. Given these limitations, our research delves into the advantages of harnessing the FPGA-based computing paradigm to overcome performance bottlenecks of software-only solutions while mitigating backdoor and inference attacks. We utilize FPGA-based enclaves to address inference attacks during the aggregation process of FL. We adopt an advanced backdoor-aware aggregation algorithm on the FPGA to counter backdoor attacks. We implemented and evaluated our method on Xilinx VMK-180, yielding a significant speed-up of around 300 times on the IoT-Traffic dataset and more than 506 times on the CIFAR-10 dataset.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.