Computer Science > Social and Information Networks
[Submitted on 2 Aug 2023]
Title:The Shapes of the Fourth Estate During the Pandemic: Profiling COVID-19 News Consumption in Eight Countries
View PDFAbstract:News media is often referred to as the Fourth Estate, a recognition of its political power. New understandings of how media shape political beliefs and influence collective behaviors are urgently needed in an era when public opinion polls do not necessarily reflect election results and users influence each other in real-time under algorithm-mediated content personalization. In this work, we measure not only the average but also the distribution of audience political leanings for different media across different countries. The methodological components of these new measures include a high-fidelity COVID-19 tweet dataset; high-precision user geolocation extraction; and user political leaning estimated from the within-country retweet networks involving local politicians. We focus on geolocated users from eight countries, profile user leaning distribution for each country, and analyze bridging users who have interactions across multiple countries. Except for France and Turkey, we observe consistent bi-modal user leaning distributions in the other six countries, and find that cross-country retweeting behaviors do not oscillate across the partisan divide. More importantly, this study contributes a new set of media bias estimates by averaging the leaning scores of users who share the URLs from media domains. Through two validations, we find that the new average audience leaning scores strongly correlate with existing media bias scores. Lastly, we profile the COVID-19 news consumption by examining the audience leaning distribution for top media in each country, and for selected media across all countries. Those analyses help answer questions such as: Does center media Reuters have a more balanced audience base than partisan media CNN in the US? Does far-right media Breitbart attract any left-leaning readers in any countries? Does CNN reach a more balanced audience base in the US than in the UK?
Current browse context:
cs.SI
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.