Computer Science > Computation and Language
[Submitted on 4 Aug 2023]
Title:Adapting the NICT-JLE Corpus for Disfluency Detection Models
View PDFAbstract:The detection of disfluencies such as hesitations, repetitions and false starts commonly found in speech is a widely studied area of research. With a standardised process for evaluation using the Switchboard Corpus, model performance can be easily compared across approaches. This is not the case for disfluency detection research on learner speech, however, where such datasets have restricted access policies, making comparison and subsequent development of improved models more challenging. To address this issue, this paper describes the adaptation of the NICT-JLE corpus, containing approximately 300 hours of English learners' oral proficiency tests, to a format that is suitable for disfluency detection model training and evaluation. Points of difference between the NICT-JLE and Switchboard corpora are explored, followed by a detailed overview of adaptations to the tag set and meta-features of the NICT-JLE corpus. The result of this work provides a standardised train, heldout and test set for use in future research on disfluency detection for learner speech.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.