Computer Science > Computer Vision and Pattern Recognition
[Submitted on 6 Aug 2023]
Title:All-in-one Multi-degradation Image Restoration Network via Hierarchical Degradation Representation
View PDFAbstract:The aim of image restoration is to recover high-quality images from distorted ones. However, current methods usually focus on a single task (\emph{e.g.}, denoising, deblurring or super-resolution) which cannot address the needs of real-world multi-task processing, especially on mobile devices. Thus, developing an all-in-one method that can restore images from various unknown distortions is a significant challenge. Previous works have employed contrastive learning to learn the degradation representation from observed images, but this often leads to representation drift caused by deficient positive and negative pairs. To address this issue, we propose a novel All-in-one Multi-degradation Image Restoration Network (AMIRNet) that can effectively capture and utilize accurate degradation representation for image restoration. AMIRNet learns a degradation representation for unknown degraded images by progressively constructing a tree structure through clustering, without any prior knowledge of degradation information. This tree-structured representation explicitly reflects the consistency and discrepancy of various distortions, providing a specific clue for image restoration. To further enhance the performance of the image restoration network and overcome domain gaps caused by unknown distortions, we design a feature transform block (FTB) that aligns domains and refines features with the guidance of the degradation representation. We conduct extensive experiments on multiple distorted datasets, demonstrating the effectiveness of our method and its advantages over state-of-the-art restoration methods both qualitatively and quantitatively.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.