Electrical Engineering and Systems Science > Signal Processing
[Submitted on 10 Aug 2023]
Title:Fully-Passive versus Semi-Passive IRS-Enabled Sensing: SNR Analysis
View PDFAbstract:This paper compares the signal-to-noise ratio (SNR) performance between the fully-passive intelligent reflecting surface (IRS)-enabled non-line-of-sight (NLoS) sensing versus its semi-passive counterpart. In particular, we consider a basic setup with one base station (BS), one uniform linear array (ULA) IRS, and one point target at the BS's NLoS region, in which the BS and the IRS jointly design the transmit and reflective beamforming for performance optimization. By considering two special cases with the BS-IRS channels being line-of-sight (LoS) and Rayleigh fading, respectively, we derive the corresponding asymptotic sensing SNR when the number of reflecting elements $N$ at the IRS becomes sufficiently large. It is revealed that in the two special cases, the sensing SNR increases proportional to $N^2$ for the semi-passive IRS sensing system, but proportional to $N^4$ for the fully-passive IRS sensing system. As such, the fully-passive IRS sensing system is shown to outperform the semi-passive counterpart when $N$ becomes large, which is due to the fact that the fully-passive IRS sensing enjoys additional reflective beamforming gain from the IRS to the BS that outweighs the resultant path loss in this case. Finally, numerical results are presented to validate our analysis under different transmit and reflective beamforming design schemes.
Current browse context:
eess.SP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.