Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 16 Jul 2023]
Title:DynamicFL: Balancing Communication Dynamics and Client Manipulation for Federated Learning
View PDFAbstract:Federated Learning (FL) is a distributed machine learning (ML) paradigm, aiming to train a global model by exploiting the decentralized data across millions of edge devices. Compared with centralized learning, FL preserves the clients' privacy by refraining from explicitly downloading their data. However, given the geo-distributed edge devices (e.g., mobile, car, train, or subway) with highly dynamic networks in the wild, aggregating all the model updates from those participating devices will result in inevitable long-tail delays in FL. This will significantly degrade the efficiency of the training process. To resolve the high system heterogeneity in time-sensitive FL scenarios, we propose a novel FL framework, DynamicFL, by considering the communication dynamics and data quality across massive edge devices with a specially designed client manipulation strategy. \ours actively selects clients for model updating based on the network prediction from its dynamic network conditions and the quality of its training data. Additionally, our long-term greedy strategy in client selection tackles the problem of system performance degradation caused by short-term scheduling in a dynamic network. Lastly, to balance the trade-off between client performance evaluation and client manipulation granularity, we dynamically adjust the length of the observation window in the training process to optimize the long-term system efficiency. Compared with the state-of-the-art client selection scheme in FL, \ours can achieve a better model accuracy while consuming only 18.9\% -- 84.0\% of the wall-clock time. Our component-wise and sensitivity studies further demonstrate the robustness of \ours under various real-life scenarios.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.