Computer Science > Machine Learning
[Submitted on 16 Aug 2023]
Title:Is Self-Supervised Pretraining Good for Extrapolation in Molecular Property Prediction?
View PDFAbstract:The prediction of material properties plays a crucial role in the development and discovery of materials in diverse applications, such as batteries, semiconductors, catalysts, and pharmaceuticals. Recently, there has been a growing interest in employing data-driven approaches by using machine learning technologies, in combination with conventional theoretical calculations. In material science, the prediction of unobserved values, commonly referred to as extrapolation, is particularly critical for property prediction as it enables researchers to gain insight into materials beyond the limits of available data. However, even with the recent advancements in powerful machine learning models, accurate extrapolation is still widely recognized as a significantly challenging problem. On the other hand, self-supervised pretraining is a machine learning technique where a model is first trained on unlabeled data using relatively simple pretext tasks before being trained on labeled data for target tasks. As self-supervised pretraining can effectively utilize material data without observed property values, it has the potential to improve the model's extrapolation ability. In this paper, we clarify how such self-supervised pretraining can enhance extrapolation this http URL propose an experimental framework for the demonstration and empirically reveal that while models were unable to accurately extrapolate absolute property values, self-supervised pretraining enables them to learn relative tendencies of unobserved property values and improve extrapolation performance.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.