Computer Science > Computer Science and Game Theory
[Submitted on 18 Aug 2023]
Title:Greedy-Based Online Fair Allocation with Adversarial Input: Enabling Best-of-Many-Worlds Guarantees
View PDFAbstract:We study an online allocation problem with sequentially arriving items and adversarially chosen agent values, with the goal of balancing fairness and efficiency. Our goal is to study the performance of algorithms that achieve strong guarantees under other input models such as stochastic inputs, in order to achieve robust guarantees against a variety of inputs. To that end, we study the PACE (Pacing According to Current Estimated utility) algorithm, an existing algorithm designed for stochastic input. We show that in the equal-budgets case, PACE is equivalent to the integral greedy algorithm. We go on to show that with natural restrictions on the adversarial input model, both integral greedy allocation and PACE have asymptotically bounded multiplicative envy as well as competitive ratio for Nash welfare, with the multiplicative factors either constant or with optimal order dependence on the number of agents. This completes a "best-of-many-worlds" guarantee for PACE, since past work showed that PACE achieves guarantees for stationary and stochastic-but-non-stationary input models.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.