Computer Science > Computational Geometry
[Submitted on 21 Aug 2023 (v1), last revised 23 Aug 2023 (this version, v2)]
Title:Fixed-Parameter Algorithms for Computing RAC Drawings of Graphs
View PDFAbstract:In a right-angle crossing (RAC) drawing of a graph, each edge is represented as a polyline and edge crossings must occur at an angle of exactly $90^\circ$, where the number of bends on such polylines is typically restricted in some way. While structural and topological properties of RAC drawings have been the focus of extensive research, little was known about the boundaries of tractability for computing such drawings. In this paper, we initiate the study of RAC drawings from the viewpoint of parameterized complexity. In particular, we establish that computing a RAC drawing of an input graph $G$ with at most $b$ bends (or determining that none exists) is fixed-parameter tractable parameterized by either the feedback edge number of $G$, or $b$ plus the vertex cover number of $G$.
Submission history
From: Robert Ganian [view email][v1] Mon, 21 Aug 2023 09:56:56 UTC (310 KB)
[v2] Wed, 23 Aug 2023 07:44:30 UTC (315 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.