Computer Science > Machine Learning
[Submitted on 28 Aug 2023]
Title:Are Existing Out-Of-Distribution Techniques Suitable for Network Intrusion Detection?
View PDFAbstract:Machine learning (ML) has become increasingly popular in network intrusion detection. However, ML-based solutions always respond regardless of whether the input data reflects known patterns, a common issue across safety-critical applications. While several proposals exist for detecting Out-Of-Distribution (OOD) in other fields, it remains unclear whether these approaches can effectively identify new forms of intrusions for network security. New attacks, not necessarily affecting overall distributions, are not guaranteed to be clearly OOD as instead, images depicting new classes are in computer vision. In this work, we investigate whether existing OOD detectors from other fields allow the identification of unknown malicious traffic. We also explore whether more discriminative and semantically richer embedding spaces within models, such as those created with contrastive learning and multi-class tasks, benefit detection. Our investigation covers a set of six OOD techniques that employ different detection strategies. These techniques are applied to models trained in various ways and subsequently exposed to unknown malicious traffic from the same and different datasets (network environments). Our findings suggest that existing detectors can identify a consistent portion of new malicious traffic, and that improved embedding spaces enhance detection. We also demonstrate that simple combinations of certain detectors can identify almost 100% of malicious traffic in our tested scenarios.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.