Computer Science > Machine Learning
[Submitted on 29 Aug 2023 (v1), last revised 11 Mar 2024 (this version, v2)]
Title:Directional Optimism for Safe Linear Bandits
View PDF HTML (experimental)Abstract:The safe linear bandit problem is a version of the classical stochastic linear bandit problem where the learner's actions must satisfy an uncertain constraint at all rounds. Due its applicability to many real-world settings, this problem has received considerable attention in recent years. By leveraging a novel approach that we call directional optimism, we find that it is possible to achieve improved regret guarantees for both well-separated problem instances and action sets that are finite star convex sets. Furthermore, we propose a novel algorithm for this setting that improves on existing algorithms in terms of empirical performance, while enjoying matching regret guarantees. Lastly, we introduce a generalization of the safe linear bandit setting where the constraints are convex and adapt our algorithms and analyses to this setting by leveraging a novel convex-analysis based approach.
Submission history
From: Spencer Hutchinson [view email][v1] Tue, 29 Aug 2023 03:54:53 UTC (742 KB)
[v2] Mon, 11 Mar 2024 23:32:33 UTC (318 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
Connected Papers (What is Connected Papers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.