Electrical Engineering and Systems Science > Audio and Speech Processing
[Submitted on 29 Aug 2023]
Title:Multi-Transfer Learning Techniques for Detecting Auditory Brainstem Response
View PDFAbstract:The assessment of the well-being of the peripheral auditory nerve system in individuals experiencing hearing impairment is conducted through auditory brainstem response (ABR) testing. Audiologists assess and document the results of the ABR test. They interpret the findings and assign labels to them using reference-based markers like peak latency, waveform morphology, amplitude, and other relevant factors. Inaccurate assessment of ABR tests may lead to incorrect judgments regarding the integrity of the auditory nerve system; therefore, proper Hearing Loss (HL) diagnosis and analysis are essential. To identify and assess ABR automation while decreasing the possibility of human error, machine learning methods, notably deep learning, may be an appropriate option. To address these issues, this study proposed deep-learning models using the transfer-learning (TL) approach to extract features from ABR testing and diagnose HL using support vector machines (SVM). Pre-trained convolutional neural network (CNN) architectures like AlexNet, DenseNet, GoogleNet, InceptionResNetV2, InceptionV3, MobileNetV2, NASNetMobile, ResNet18, ResNet50, ResNet101, ShuffleNet, and SqueezeNet are used to extract features from the collected ABR reported images dataset in the proposed model. It has been decided to use six measures accuracy, precision, recall, geometric mean (GM), standard deviation (SD), and area under the ROC curve to measure the effectiveness of the proposed model. According to experimental findings, the ShuffleNet and ResNet50 models' TL is effective for ABR to diagnose HL using an SVM classifier, with a high accuracy rate of 95% when using the 5-fold cross-validation method.
Current browse context:
eess.AS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.