Computer Science > Computational Engineering, Finance, and Science
[Submitted on 31 Aug 2023]
Title:Data-driven Product-Process Optimization of N-isopropylacrylamide Microgel Flow-Synthesis
View PDFAbstract:Microgels are cross-linked, colloidal polymer networks with great potential for stimuli-response release in drug-delivery applications, as their size in the nanometer range allows them to pass human cell boundaries. For applications with specified requirements regarding size, producing tailored microgels in a continuous flow reactor is advantageous because the microgel properties can be controlled tightly. However, no fully-specified mechanistic models are available for continuous microgel synthesis, as the physical properties of the included components are only studied partly. To address this gap and accelerate tailor-made microgel development, we propose a data-driven optimization in a hardware-in-the-loop approach to efficiently synthesize microgels with defined sizes. We optimize the synthesis regarding conflicting objectives (maximum production efficiency, minimum energy consumption, and the desired microgel radius) by applying Bayesian optimization via the solver ``Thompson sampling efficient multi-objective optimization'' (TS-EMO). We validate the optimization using the deterministic global solver ``McCormick-based Algorithm for mixed-integer Nonlinear Global Optimization'' (MAiNGO) and verify three computed Pareto optimal solutions via experiments. The proposed framework can be applied to other desired microgel properties and reactor setups and has the potential of efficient development by minimizing number of experiments and modelling effort needed.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.