Computer Science > Computer Vision and Pattern Recognition
[Submitted on 2 Sep 2023 (v1), last revised 8 Jul 2024 (this version, v4)]
Title:An explainable three dimension framework to uncover learning patterns: A unified look in variable sulci recognition
View PDF HTML (experimental)Abstract:The significant features identified in a representative subset of the dataset during the learning process of an artificial intelligence model are referred to as a 'global' explanation. Three-dimensional (3D) global explanations are crucial in neuroimaging where a complex representational space demands more than basic two-dimensional interpretations. Curently, studies in the literature lack accurate, low-complexity, and 3D global explanations in neuroimaging and beyond. To fill this gap, we develop a novel explainable artificial intelligence (XAI) 3D-Framework that provides robust, faithful, and low-complexity global explanations. We evaluated our framework on various 3D deep learning networks trained, validated, and tested on a well-annotated cohort of 596 MRI images. The focus of detection was on the presence or absence of the paracingulate sulcus, a highly variable feature of brain topology associated with symptoms of psychosis. Our proposed 3D-Framework outperformed traditional XAI methods in terms of faithfulness for global explanations. As a result, these explanations uncovered new patterns that not only enhance the credibility and reliability of the training process but also reveal the broader developmental landscape of the human cortex. Our XAI 3D-Framework proposes for the first time, a way to utilize global explanations to discover the context in which detection of specific features are embedded, opening our understanding of normative brain development and atypical trajectories that can lead to the emergence of mental illness.
Submission history
From: Michail Mamalakis Dr [view email][v1] Sat, 2 Sep 2023 10:46:05 UTC (16,582 KB)
[v2] Thu, 21 Mar 2024 15:12:36 UTC (6,565 KB)
[v3] Fri, 7 Jun 2024 23:12:16 UTC (2,340 KB)
[v4] Mon, 8 Jul 2024 11:07:55 UTC (3,648 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.