Computer Science > Computer Vision and Pattern Recognition
[Submitted on 4 Sep 2023 (v1), last revised 30 Oct 2024 (this version, v2)]
Title:StyleAdapter: A Unified Stylized Image Generation Model
View PDF HTML (experimental)Abstract:This work focuses on generating high-quality images with specific style of reference images and content of provided textual descriptions. Current leading algorithms, i.e., DreamBooth and LoRA, require fine-tuning for each style, leading to time-consuming and computationally expensive processes. In this work, we propose StyleAdapter, a unified stylized image generation model capable of producing a variety of stylized images that match both the content of a given prompt and the style of reference images, without the need for per-style fine-tuning. It introduces a two-path cross-attention (TPCA) module to separately process style information and textual prompt, which cooperate with a semantic suppressing vision model (SSVM) to suppress the semantic content of style images. In this way, it can ensure that the prompt maintains control over the content of the generated images, while also mitigating the negative impact of semantic information in style references. This results in the content of the generated image adhering to the prompt, and its style aligning with the style references. Besides, our StyleAdapter can be integrated with existing controllable synthesis methods, such as T2I-adapter and ControlNet, to attain a more controllable and stable generation process. Extensive experiments demonstrate the superiority of our method over previous works.
Submission history
From: Zhouxia Wang [view email][v1] Mon, 4 Sep 2023 19:16:46 UTC (5,956 KB)
[v2] Wed, 30 Oct 2024 17:05:17 UTC (16,901 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.