Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 5 Sep 2023]
Title:Run for Cover: Dominating Set via Mobile Agents
View PDFAbstract:Research involving computing with mobile agents is a fast-growing field, given the advancement of technology in automated systems, e.g., robots, drones, self-driving cars, etc. Therefore, it is pressing to focus on solving classical network problems using mobile agents. In this paper, we study one such problem -- finding small dominating sets of a graph $G$ using mobile agents. Dominating set is interesting in the field of mobile agents as it opens up a way for solving various robotic problems, e.g., guarding, covering, facility location, transport routing, etc. In this paper, we first present two algorithms for computing a {\em minimal dominating set}: (i) an $O(m)$ time algorithm if the robots start from a single node (i.e., gathered initially), (ii) an $O(\ell\Delta\log(\lambda)+n\ell+m)$ time algorithm, if the robots start from multiple nodes (i.e., positioned arbitrarily), where $m$ is the number of edges and $\Delta$ is the maximum degree of $G$, $\ell$ is the number of clusters of the robot initially and $\lambda$ is the maximum ID-length of the robots. Then we present a $\ln (\Delta)$ approximation algorithm for the {\em minimum} dominating set which takes $O(n\Delta\log (\lambda))$ rounds.
Submission history
From: Prabhat Kumar Chand [view email][v1] Tue, 5 Sep 2023 13:06:05 UTC (629 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.