Computer Science > Machine Learning
[Submitted on 7 Sep 2023 (v1), last revised 7 Dec 2023 (this version, v2)]
Title:TSGBench: Time Series Generation Benchmark
View PDF HTML (experimental)Abstract:Synthetic Time Series Generation (TSG) is crucial in a range of applications, including data augmentation, anomaly detection, and privacy preservation. Although significant strides have been made in this field, existing methods exhibit three key limitations: (1) They often benchmark against similar model types, constraining a holistic view of performance capabilities. (2) The use of specialized synthetic and private datasets introduces biases and hampers generalizability. (3) Ambiguous evaluation measures, often tied to custom networks or downstream tasks, hinder consistent and fair comparison.
To overcome these limitations, we introduce \textsf{TSGBench}, the inaugural Time Series Generation Benchmark, designed for a unified and comprehensive assessment of TSG methods. It comprises three modules: (1) a curated collection of publicly available, real-world datasets tailored for TSG, together with a standardized preprocessing pipeline; (2) a comprehensive evaluation measures suite including vanilla measures, new distance-based assessments, and visualization tools; (3) a pioneering generalization test rooted in Domain Adaptation (DA), compatible with all methods. We have conducted comprehensive experiments using \textsf{TSGBench} across a spectrum of ten real-world datasets from diverse domains, utilizing ten advanced TSG methods and twelve evaluation measures. The results highlight the reliability and efficacy of \textsf{TSGBench} in evaluating TSG methods. Crucially, \textsf{TSGBench} delivers a statistical analysis of the performance rankings of these methods, illuminating their varying performance across different datasets and measures and offering nuanced insights into the effectiveness of each method.
Submission history
From: Qiang Huang [view email][v1] Thu, 7 Sep 2023 14:51:42 UTC (6,260 KB)
[v2] Thu, 7 Dec 2023 13:42:53 UTC (6,516 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.