Mathematics > Numerical Analysis
[Submitted on 10 Sep 2023]
Title:A multi-fidelity machine learning based semi-Lagrangian finite volume scheme for linear transport equations and the nonlinear Vlasov-Poisson system
View PDFAbstract:Machine-learning (ML) based discretization has been developed to simulate complex partial differential equations (PDEs) with tremendous success across various fields. These learned PDE solvers can effectively resolve the underlying solution structures of interest and achieve a level of accuracy which often requires an order-of-magnitude finer grid for a conventional numerical method using polynomial-based approximations. In a previous work in [13], we introduced a learned finite volume discretization that further incorporates the semi-Lagrangian (SL) mechanism, enabling larger CFL numbers for stability. However, the efficiency and effectiveness of such methodology heavily rely on the availability of abundant high-resolution training data, which can be prohibitively expensive to obtain. To address this challenge, in this paper, we propose a novel multi-fidelity ML-based SL method for transport equations. This method leverages a combination of a small amount of high-fidelity data and sufficient but cheaper low-fidelity data. The approach is designed based on a composite convolutional neural network architecture that explore the inherent correlation between high-fidelity and low-fidelity data. The proposed method demonstrates the capability to achieve a reasonable level of accuracy, particularly in scenarios where a single-fidelity model fails to generalize effectively. We further extend the method to the nonlinear Vlasov-Poisson system by employing high order Runge-Kutta exponential integrators. A collection of numerical tests are provided to validate the efficiency and accuracy of the proposed method.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.