Electrical Engineering and Systems Science > Systems and Control
[Submitted on 14 Sep 2023]
Title:Frequency-adaptive control of a three-phase single-stage grid-connected photovoltaic system under grid voltage sags
View PDFAbstract:The low-voltage ride-through service is carried out in this paper according to the voltage profile described by the IEC 61400-21 European normative when short-duration voltage sags happen, and some instantaneous reactive power is delivered to the grid in accordance with the Spanish grid code; the mandatory limitation of the amplitude of the three-phase inverter currents to its nominal value is carried out with a novel control strategy, in which a certain amount of instantaneous constant active power can also be delivered to the grid when small or moderate voltage sags happen. A Multiple second order generalized integrator frequency-locked loop synchronization algorithm is employed in order to estimate the system frequency without harmonic distortions, as well as to output the positive- and the negative- sequence of the {\alpha}\b{eta} quantities of the three-phase grid voltages when balanced and unbalanced voltage sags happen in a frequency-adaptive scheme. The current control is carried out in the stationary reference frame, which guarantees the cancellation of the harmonic distortions in the utility grid currents using a Harmonic compensation structure, and the implementation of a constant active power control in order to protect the DC link capacitor from thermal stresses avoiding the appearance of large harmonic distortions at twice the fundamental frequency in the DC link voltage. A case study of a three-phase single-stage grid-connected PV system with a maximum apparent power about 500 kVA is tested with several simulations using MATLAB/SIMULINK firstly, and secondly, with some experiments using the Controller hardware-in-the-loop (CHIL) simulation technique for several types of voltage sags in order to do the final validation of the control algorithms.
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.