Computer Science > Robotics
[Submitted on 16 Sep 2023]
Title:Distributionally Robust CVaR-Based Safety Filtering for Motion Planning in Uncertain Environments
View PDFAbstract:Safety is a core challenge of autonomous robot motion planning, especially in the presence of dynamic and uncertain obstacles. Many recent results use learning and deep learning-based motion planners and prediction modules to predict multiple possible obstacle trajectories and generate obstacle-aware ego robot plans. However, planners that ignore the inherent uncertainties in such predictions incur collision risks and lack formal safety guarantees. In this paper, we present a computationally efficient safety filtering solution to reduce the collision risk of ego robot motion plans using multiple samples of obstacle trajectory predictions. The proposed approach reformulates the collision avoidance problem by computing safe halfspaces based on obstacle sample trajectories using distributionally robust optimization (DRO) techniques. The safe halfspaces are used in a model predictive control (MPC)-like safety filter to apply corrections to the reference ego trajectory thereby promoting safer planning. The efficacy and computational efficiency of our approach are demonstrated through numerical simulations.
Current browse context:
cs.RO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.