Computer Science > Computer Vision and Pattern Recognition
[Submitted on 19 Sep 2023 (v1), last revised 25 Jul 2024 (this version, v3)]
Title:SPOT: Scalable 3D Pre-training via Occupancy Prediction for Learning Transferable 3D Representations
View PDF HTML (experimental)Abstract:Annotating 3D LiDAR point clouds for perception tasks is fundamental for many applications e.g., autonomous driving, yet it still remains notoriously labor-intensive. Pretraining-finetuning approach can alleviate the labeling burden by fine-tuning a pre-trained backbone across various downstream datasets as well as tasks. In this paper, we propose SPOT, namely Scalable Pre-training via Occupancy prediction for learning Transferable 3D representations under such a label-efficient fine-tuning paradigm. SPOT achieves effectiveness on various public datasets with different downstream tasks, showcasing its general representation power, cross-domain robustness and data scalability which are three key factors for real-world application. Specifically, we both theoretically and empirically show, for the first time, that general representations learning can be achieved through the task of occupancy prediction. Then, to address the domain gap caused by different LiDAR sensors and annotation methods, we develop a beam re-sampling technique for point cloud augmentation combined with class-balancing strategy. Furthermore, scalable pre-training is observed, that is, the downstream performance across all the experiments gets better with more pre-training data. Additionally, such pre-training strategy also remains compatible with unlabeled data. The hope is that our findings will facilitate the understanding of LiDAR points and pave the way for future advancements in LiDAR pre-training.
Submission history
From: Bo Zhang [view email][v1] Tue, 19 Sep 2023 11:13:01 UTC (6,925 KB)
[v2] Mon, 25 Sep 2023 06:41:30 UTC (6,925 KB)
[v3] Thu, 25 Jul 2024 11:26:49 UTC (25,047 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.