Computer Science > Graphics
[Submitted on 27 Sep 2023]
Title:Voxel Graph Operators: Topological Voxelization, Graph Generation, and Derivation of Discrete Differential Operators from Voxel Complexes
View PDFAbstract:In this paper, we present a novel workflow consisting of algebraic algorithms and data structures for fast and topologically accurate conversion of vector data models such as Boundary Representations into voxels (topological voxelization); spatially indexing them; constructing connectivity graphs from voxels; and constructing a coherent set of multivariate differential and integral operators from these graphs. Topological Voxelization is revisited and presented in the paper as a reversible mapping of geometric models from $\mathbb{R}^3$ to $\mathbb{Z}^3$ to $\mathbb{N}^3$ and eventually to an index space created by Morton Codes in $\mathbb{N}$ while ensuring the topological validity of the voxel models; namely their topological thinness and their geometrical consistency. In addition, we present algorithms for constructing graphs and hyper-graph connectivity models on voxel data for graph traversal and field interpolations and utilize them algebraically in elegantly discretizing differential and integral operators for geometric, graphical, or spatial analyses and digital simulations. The multi-variate differential and integral operators presented in this paper can be used particularly in the formulation of Partial Differential Equations for physics simulations.
Current browse context:
cs.GR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.