Computer Science > Social and Information Networks
[Submitted on 27 Sep 2023]
Title:Influence Pathway Discovery on Social Media
View PDFAbstract:This paper addresses influence pathway discovery, a key emerging problem in today's online media. We propose a discovery algorithm that leverages recently published work on unsupervised interpretable ideological embedding, a mapping of ideological beliefs (done in a self-supervised fashion) into interpretable low-dimensional spaces. Computing the ideological embedding at scale allows one to analyze correlations between the ideological positions of leaders, influencers, news portals, or population segments, deriving potential influence pathways. The work is motivated by the importance of social media as the preeminent means for global interactions and collaborations on today's Internet, as well as their frequent (mis-)use to wield influence that targets social beliefs and attitudes of selected populations. Tools that enable the understanding and mapping of influence propagation through population segments on social media are therefore increasingly important. In this paper, influence is measured by the perceived ideological shift over time that is correlated with influencers' activity. Correlated shifts in ideological embeddings indicate changes, such as swings/switching (among competing ideologies), polarization (depletion of neutral ideological positions), escalation/radicalization (shifts to more extreme versions of the ideology), or unification/cooldown (shifts towards more neutral stances). Case-studies are presented to explore selected influence pathways (i) in a recent French election, (ii) during political discussions in the Philippines, and (iii) for some Russian messaging during the Russia/Ukraine conflict.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.