Computer Science > Information Retrieval
[Submitted on 29 Sep 2023]
Title:Beyond Co-occurrence: Multi-modal Session-based Recommendation
View PDFAbstract:Session-based recommendation is devoted to characterizing preferences of anonymous users based on short sessions. Existing methods mostly focus on mining limited item co-occurrence patterns exposed by item ID within sessions, while ignoring what attracts users to engage with certain items is rich multi-modal information displayed on pages. Generally, the multi-modal information can be classified into two categories: descriptive information (e.g., item images and description text) and numerical information (e.g., price). In this paper, we aim to improve session-based recommendation by modeling the above multi-modal information holistically. There are mainly three issues to reveal user intent from multi-modal information: (1) How to extract relevant semantics from heterogeneous descriptive information with different noise? (2) How to fuse these heterogeneous descriptive information to comprehensively infer user interests? (3) How to handle probabilistic influence of numerical information on user behaviors? To solve above issues, we propose a novel multi-modal session-based recommendation (MMSBR) that models both descriptive and numerical information under a unified framework. Specifically, a pseudo-modality contrastive learning is devised to enhance the representation learning of descriptive information. Afterwards, a hierarchical pivot transformer is presented to fuse heterogeneous descriptive information. Moreover, we represent numerical information with Gaussian distribution and design a Wasserstein self-attention to handle the probabilistic influence mode. Extensive experiments on three real-world datasets demonstrate the effectiveness of the proposed MMSBR. Further analysis also proves that our MMSBR can alleviate the cold-start problem in SBR effectively.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.