Computer Science > Social and Information Networks
[Submitted on 30 Sep 2023]
Title:Mapping of Internet "Coastlines" via Large Scale Anonymized Network Source Correlations
View PDFAbstract:Expanding the scientific tools available to protect computer networks can be aided by a deeper understanding of the underlying statistical distributions of network traffic and their potential geometric interpretations. Analyses of large scale network observations provide a unique window into studying those underlying statistics. Newly developed GraphBLAS hypersparse matrices and D4M associative array technologies enable the efficient anonymized analysis of network traffic on the scale of trillions of events. This work analyzes over 100,000,000,000 anonymized packets from the largest Internet telescope (CAIDA) and over 10,000,000 anonymized sources from the largest commercial honeyfarm (GreyNoise). Neither CAIDA nor GreyNoise actively emit Internet traffic and provide distinct observations of unsolicited Internet traffic (primarily botnets and scanners). Analysis of these observations confirms the previously observed Cauchy-like distributions describing temporal correlations between Internet sources. The Gull lighthouse problem is a well-known geometric characterization of the standard Cauchy distribution and motivates a potential geometric interpretation for Internet observations. This work generalizes the Gull lighthouse problem to accommodate larger classes of coastlines, deriving a closed-form solution for the resulting probability distributions, stating and examining the inverse problem of identifying an appropriate coastline given a continuous probability distribution, identifying a geometric heuristic for solving this problem computationally, and applying that heuristic to examine the temporal geometry of different subsets of network observations. Application of this method to the CAIDA and GreyNoise data reveals a several orders of magnitude difference between known benign and other traffic which can lead to potentially novel ways to protect networks.
Submission history
From: Hayden Jananthan [view email][v1] Sat, 30 Sep 2023 23:24:08 UTC (1,880 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.