Electrical Engineering and Systems Science > Systems and Control
[Submitted on 3 Oct 2023]
Title:Leveraging Data-Driven Models for Accurate Analysis of Grid-Tied Smart Inverters Dynamics
View PDFAbstract:The integration of power electronic converters (PECs) and distributed energy resources (DERs) in modern power systems has introduced dynamism and complexity. Accurate simulation becomes essential to comprehend the influence of converter domination on the power grid. This study addresses the fast-switching and stochastic behaviors exhibited by inverter-based resources in converter-dominated power systems, highlighting the necessity for precise analytical models. In the realm of modeling real-world systems, multiple methodologies exist. Notably, black-box and data-driven system identification techniques are employed to construct PEC models using experimental data, without relying on a priori knowledge of the internal system physics. This approach entails a systematic process of model class selection, parameter estimation, and model validation. While a range of linear and nonlinear model structures and estimation algorithms are at our disposal, it remains imperative to harness creativity and a profound understanding of the physical system to craft data-driven models that align seamlessly with their intended applications. These applications may encompass simulation, prediction, control, or fault detection. This report offers valuable insights into the collection of datasets from commercial off-the-shelf inverters, along with the presentation of intricate simulation models.
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.