Computer Science > Machine Learning
[Submitted on 3 Oct 2023]
Title:A Deep Reinforcement Learning Approach for Interactive Search with Sentence-level Feedback
View PDFAbstract:Interactive search can provide a better experience by incorporating interaction feedback from the users. This can significantly improve search accuracy as it helps avoid irrelevant information and captures the users' search intents. Existing state-of-the-art (SOTA) systems use reinforcement learning (RL) models to incorporate the interactions but focus on item-level feedback, ignoring the fine-grained information found in sentence-level feedback. Yet such feedback requires extensive RL action space exploration and large amounts of annotated data. This work addresses these challenges by proposing a new deep Q-learning (DQ) approach, DQrank. DQrank adapts BERT-based models, the SOTA in natural language processing, to select crucial sentences based on users' engagement and rank the items to obtain more satisfactory responses. We also propose two mechanisms to better explore optimal actions. DQrank further utilizes the experience replay mechanism in DQ to store the feedback sentences to obtain a better initial ranking performance. We validate the effectiveness of DQrank on three search datasets. The results show that DQRank performs at least 12% better than the previous SOTA RL approaches. We also conduct detailed ablation studies. The ablation results demonstrate that each model component can efficiently extract and accumulate long-term engagement effects from the users' sentence-level feedback. This structure offers new technologies with promised performance to construct a search system with sentence-level interaction.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.