Computer Science > Machine Learning
[Submitted on 7 Oct 2023]
Title:Twin Graph-based Anomaly Detection via Attentive Multi-Modal Learning for Microservice System
View PDFAbstract:Microservice architecture has sprung up over recent years for managing enterprise applications, due to its ability to independently deploy and scale services. Despite its benefits, ensuring the reliability and safety of a microservice system remains highly challenging. Existing anomaly detection algorithms based on a single data modality (i.e., metrics, logs, or traces) fail to fully account for the complex correlations and interactions between different modalities, leading to false negatives and false alarms, whereas incorporating more data modalities can offer opportunities for further performance gain. As a fresh attempt, we propose in this paper a semi-supervised graph-based anomaly detection method, MSTGAD, which seamlessly integrates all available data modalities via attentive multi-modal learning. First, we extract and normalize features from the three modalities, and further integrate them using a graph, namely MST (microservice system twin) graph, where each node represents a service instance and the edge indicates the scheduling relationship between different service instances. The MST graph provides a virtual representation of the status and scheduling relationships among service instances of a real-world microservice system. Second, we construct a transformer-based neural network with both spatial and temporal attention mechanisms to model the inter-correlations between different modalities and temporal dependencies between the data points. This enables us to detect anomalies automatically and accurately in real-time. The source code of MSTGAD is publicly available at this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.