Computer Science > Graphics
[Submitted on 9 Oct 2023]
Title:Neural Impostor: Editing Neural Radiance Fields with Explicit Shape Manipulation
View PDFAbstract:Neural Radiance Fields (NeRF) have significantly advanced the generation of highly realistic and expressive 3D scenes. However, the task of editing NeRF, particularly in terms of geometry modification, poses a significant challenge. This issue has obstructed NeRF's wider adoption across various applications. To tackle the problem of efficiently editing neural implicit fields, we introduce Neural Impostor, a hybrid representation incorporating an explicit tetrahedral mesh alongside a multigrid implicit field designated for each tetrahedron within the explicit mesh. Our framework bridges the explicit shape manipulation and the geometric editing of implicit fields by utilizing multigrid barycentric coordinate encoding, thus offering a pragmatic solution to deform, composite, and generate neural implicit fields while maintaining a complex volumetric appearance. Furthermore, we propose a comprehensive pipeline for editing neural implicit fields based on a set of explicit geometric editing operations. We show the robustness and adaptability of our system through diverse examples and experiments, including the editing of both synthetic objects and real captured data. Finally, we demonstrate the authoring process of a hybrid synthetic-captured object utilizing a variety of editing operations, underlining the transformative potential of Neural Impostor in the field of 3D content creation and manipulation.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.