Computer Science > Computer Vision and Pattern Recognition
[Submitted on 12 Oct 2023]
Title:Assessing of Soil Erosion Risk Through Geoinformation Sciences and Remote Sensing -- A Review
View PDFAbstract:During past decades a marked manifestation of widespread erosion phenomena was studied worldwide. Global conservation community has launched campaigns at local, regional and continental level in developing countries for preservation of soil resources in order not only to stop or mitigate human impact on nature but also to improve life in rural areas introducing new approaches for soil cultivation. After the adoption of Sustainable Development Goals of UNs and launching several world initiatives such as the Land Degradation Neutrality (LDN) the world came to realize the very importance of the soil resources on which the biosphere relies for its existence. The main goal of the chapter is to review different types and structures erosion models as well as their applications. Several methods using spatial analysis capabilities of geographic information systems (GIS) are in operation for soil erosion risk assessment, such as Universal Soil Loss Equation (USLE), Revised Universal Soil Loss Equation (RUSLE) in operation worldwide and in the USA and MESALES model. These and more models are being discussed in the present work alongside more experimental models and methods for assessing soil erosion risk such as Artificial Intelligence (AI), Machine and Deep Learning, etc. At the end of this work, a prospectus for the future development of soil erosion risk assessment is drawn.
Current browse context:
cs.CV
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
Connected Papers (What is Connected Papers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.