Computer Science > Machine Learning
[Submitted on 12 Oct 2023]
Title:Stabilizing Subject Transfer in EEG Classification with Divergence Estimation
View PDFAbstract:Classification models for electroencephalogram (EEG) data show a large decrease in performance when evaluated on unseen test sub jects. We reduce this performance decrease using new regularization techniques during model training. We propose several graphical models to describe an EEG classification task. From each model, we identify statistical relationships that should hold true in an idealized training scenario (with infinite data and a globally-optimal model) but that may not hold in practice. We design regularization penalties to enforce these relationships in two stages. First, we identify suitable proxy quantities (divergences such as Mutual Information and Wasserstein-1) that can be used to measure statistical independence and dependence relationships. Second, we provide algorithms to efficiently estimate these quantities during training using secondary neural network models. We conduct extensive computational experiments using a large benchmark EEG dataset, comparing our proposed techniques with a baseline method that uses an adversarial classifier. We find our proposed methods significantly increase balanced accuracy on test subjects and decrease overfitting. The proposed methods exhibit a larger benefit over a greater range of hyperparameters than the baseline method, with only a small computational cost at training time. These benefits are largest when used for a fixed training period, though there is still a significant benefit for a subset of hyperparameters when our techniques are used in conjunction with early stopping regularization.
Submission history
From: Toshiaki Koike-Akino [view email][v1] Thu, 12 Oct 2023 23:06:52 UTC (3,750 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.