Computer Science > Machine Learning
[Submitted on 22 Oct 2023 (v1), last revised 12 Apr 2024 (this version, v2)]
Title:A Quadratic Synchronization Rule for Distributed Deep Learning
View PDF HTML (experimental)Abstract:In distributed deep learning with data parallelism, synchronizing gradients at each training step can cause a huge communication overhead, especially when many nodes work together to train large models. Local gradient methods, such as Local SGD, address this issue by allowing workers to compute locally for $H$ steps without synchronizing with others, hence reducing communication frequency. While $H$ has been viewed as a hyperparameter to trade optimization efficiency for communication cost, recent research indicates that setting a proper $H$ value can lead to generalization improvement. Yet, selecting a proper $H$ is elusive. This work proposes a theory-grounded method for determining $H$, named the Quadratic Synchronization Rule (QSR), which recommends dynamically setting $H$ in proportion to $\frac{1}{\eta^2}$ as the learning rate $\eta$ decays over time. Extensive ImageNet experiments on ResNet and ViT show that local gradient methods with QSR consistently improve the test accuracy over other synchronization strategies. Compared with the standard data parallel training, QSR enables Local AdamW on ViT-B to cut the training time on 16 or 64 GPUs down from 26.7 to 20.2 hours or from 8.6 to 5.5 hours and, at the same time, achieves $1.16\%$ or $0.84\%$ higher top-1 validation accuracy.
Submission history
From: Xinran Gu [view email][v1] Sun, 22 Oct 2023 21:38:57 UTC (3,095 KB)
[v2] Fri, 12 Apr 2024 13:59:01 UTC (4,003 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.