Computer Science > Robotics
[Submitted on 22 Oct 2023]
Title:A generalized likelihood-weighted optimal sampling algorithm for rare-event probability quantification
View PDFAbstract:In this work, we introduce a new acquisition function for sequential sampling to efficiently quantify rare-event statistics of an input-to-response (ItR) system with given input probability and expensive function evaluations. Our acquisition is a generalization of the likelihood-weighted (LW) acquisition that was initially designed for the same purpose and then extended to many other applications. The improvement in our acquisition comes from the generalized form with two additional parameters, by varying which one can target and address two weaknesses of the original LW acquisition: (1) that the input space associated with rare-event responses is not sufficiently stressed in sampling; (2) that the surrogate model (generated from samples) may have significant deviation from the true ItR function, especially for cases with complex ItR function and limited number of samples. In addition, we develop a critical procedure in Monte-Carlo discrete optimization of the acquisition function, which achieves orders of magnitude acceleration compared to existing approaches for such type of problems. The superior performance of our new acquisition to the original LW acquisition is demonstrated in a number of test cases, including some cases that were designed to show the effectiveness of the original LW acquisition. We finally apply our method to an engineering example to quantify the rare-event roll-motion statistics of a ship in a random sea.
Current browse context:
cs.RO
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.