Computer Science > Computation and Language
[Submitted on 23 Oct 2023]
Title:How To Build Competitive Multi-gender Speech Translation Models For Controlling Speaker Gender Translation
View PDFAbstract:When translating from notional gender languages (e.g., English) into grammatical gender languages (e.g., Italian), the generated translation requires explicit gender assignments for various words, including those referring to the speaker. When the source sentence does not convey the speaker's gender, speech translation (ST) models either rely on the possibly-misleading vocal traits of the speaker or default to the masculine gender, the most frequent in existing training corpora. To avoid such biased and not inclusive behaviors, the gender assignment of speaker-related expressions should be guided by externally-provided metadata about the speaker's gender. While previous work has shown that the most effective solution is represented by separate, dedicated gender-specific models, the goal of this paper is to achieve the same results by integrating the speaker's gender metadata into a single "multi-gender" neural ST model, easier to maintain. Our experiments demonstrate that a single multi-gender model outperforms gender-specialized ones when trained from scratch (with gender accuracy gains up to 12.9 for feminine forms), while fine-tuning from existing ST models does not lead to competitive results.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.