Mathematics > Numerical Analysis
[Submitted on 24 Oct 2023 (v1), last revised 16 Apr 2024 (this version, v4)]
Title:Robust Methods for Multiscale Coarse Approximations of Diffusion Models in Perforated Domains
View PDF HTML (experimental)Abstract:For the Poisson equation posed in a domain containing a large number of polygonal perforations, we propose a low-dimensional coarse approximation space based on a coarse polygonal partitioning of the domain. Similarly to other multiscale numerical methods, this coarse space is spanned by locally discrete harmonic basis functions. Along the subdomain boundaries, the basis functions are piecewise polynomial. The main contribution of this article is an error estimate regarding the H1-projection over the coarse space which depends only on the regularity of the solution over the edges of the coarse partitioning. For a specific edge refinement procedure, the error analysis establishes superconvergence of the method even if the true solution has a low general regularity. Combined with domain decomposition (DD) methods, the coarse space leads to an efficient two-level iterative linear solver which reaches the fine-scale finite element error in few iterations. It also bodes well as a preconditioner for Krylov methods and provides scalability with respect to the number of subdomains. Numerical experiments showcase the increased precision of the coarse approximation as well as the efficiency and scalability of the coarse space as a component of a DD algorithm.
Submission history
From: Miranda Boutilier [view email][v1] Tue, 24 Oct 2023 09:28:49 UTC (18,218 KB)
[v2] Wed, 25 Oct 2023 09:52:26 UTC (18,220 KB)
[v3] Wed, 10 Apr 2024 16:34:01 UTC (5,916 KB)
[v4] Tue, 16 Apr 2024 08:27:05 UTC (5,912 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.