Statistics > Machine Learning
[Submitted on 24 Oct 2023]
Title:Amortised Inference in Neural Networks for Small-Scale Probabilistic Meta-Learning
View PDFAbstract:The global inducing point variational approximation for BNNs is based on using a set of inducing inputs to construct a series of conditional distributions that accurately approximate the conditionals of the true posterior distribution. Our key insight is that these inducing inputs can be replaced by the actual data, such that the variational distribution consists of a set of approximate likelihoods for each datapoint. This structure lends itself to amortised inference, in which the parameters of each approximate likelihood are obtained by passing each datapoint through a meta-model known as the inference network. By training this inference network across related datasets, we can meta-learn Bayesian inference over task-specific BNNs.
Current browse context:
stat.ML
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.