Computer Science > Machine Learning
[Submitted on 2 Nov 2023]
Title:An Integrated Framework Integrating Monte Carlo Tree Search and Supervised Learning for Train Timetabling Problem
View PDFAbstract:The single-track railway train timetabling problem (TTP) is an important and complex problem. This article proposes an integrated Monte Carlo Tree Search (MCTS) computing framework that combines heuristic methods, unsupervised learning methods, and supervised learning methods for solving TTP in discrete action spaces. This article first describes the mathematical model and simulation system dynamics of TTP, analyzes the characteristics of the solution from the perspective of MCTS, and proposes some heuristic methods to improve MCTS. This article considers these methods as planners in the proposed framework. Secondly, this article utilizes deep convolutional neural networks to approximate the value of nodes and further applies them to the MCTS search process, referred to as learners. The experiment shows that the proposed heuristic MCTS method is beneficial for solving TTP; The algorithm framework that integrates planners and learners can improve the data efficiency of solving TTP; The proposed method provides a new paradigm for solving TTP.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.