Statistics > Applications
[Submitted on 2 Nov 2023 (v1), last revised 26 Apr 2024 (this version, v3)]
Title:Predictive Modelling of Critical Variables for Improving HVOF Coating using Gamma Regression Models
View PDF HTML (experimental)Abstract:Thermal spray coating is a critical process in many industries, involving the application of coatings to surfaces to enhance their functionality. This paper proposes a framework for modelling and predicting critical target variables in thermal spray coating processes, based on the application of statistical design of experiments (DoE) and the modelling of the data using generalized linear models (GLMs) with a particular emphasis on gamma regression. Experimental data obtained from thermal spray coating trials are used to validate the presented approach, demonstrating that it is able to accurately model and predict critical target variables. As such, the framework has significant potential for the optimization of thermal spray coating processes, and can contribute to the development of more efficient and effective coating technologies in various industries.
Submission history
From: Simon Hubmer [view email][v1] Thu, 2 Nov 2023 12:40:26 UTC (1,553 KB)
[v2] Mon, 6 Nov 2023 11:51:06 UTC (1,553 KB)
[v3] Fri, 26 Apr 2024 12:18:29 UTC (1,602 KB)
Current browse context:
stat.AP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.