Computer Science > Social and Information Networks
[Submitted on 9 Nov 2023]
Title:Detecting Suspicious Commenter Mob Behaviors on YouTube Using Graph2Vec
View PDFAbstract:YouTube, a widely popular online platform, has transformed the dynamics of con-tent consumption and interaction for users worldwide. With its extensive range of content crea-tors and viewers, YouTube serves as a hub for video sharing, entertainment, and information dissemination. However, the exponential growth of users and their active engagement on the platform has raised concerns regarding suspicious commenter behaviors, particularly in the com-ment section. This paper presents a social network analysis-based methodology for detecting suspicious commenter mob-like behaviors among YouTube channels and the similarities therein. The method aims to characterize channels based on the level of such behavior and identify com-mon patterns across them. To evaluate the effectiveness of the proposed model, we conducted an analysis of 20 YouTube channels, consisting of 7,782 videos, 294,199 commenters, and 596,982 comments. These channels were specifically selected for propagating false views about the U.S. Military. The analysis revealed significant similarities among the channels, shedding light on the prevalence of suspicious commenter behavior. By understanding these similarities, we contribute to a better understanding of the dynamics of suspicious behavior on YouTube channels, which can inform strategies for addressing and mitigating such behavior.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.