Computer Science > Computer Vision and Pattern Recognition
[Submitted on 14 Nov 2023 (v1), last revised 22 Jul 2024 (this version, v4)]
Title:PPAD: Iterative Interactions of Prediction and Planning for End-to-end Autonomous Driving
View PDF HTML (experimental)Abstract:We present a new interaction mechanism of prediction and planning for end-to-end autonomous driving, called PPAD (Iterative Interaction of Prediction and Planning Autonomous Driving), which considers the timestep-wise interaction to better integrate prediction and planning. An ego vehicle performs motion planning at each timestep based on the trajectory prediction of surrounding agents (e.g., vehicles and pedestrians) and its local road conditions. Unlike existing end-to-end autonomous driving frameworks, PPAD models the interactions among ego, agents, and the dynamic environment in an autoregressive manner by interleaving the Prediction and Planning processes at every timestep, instead of a single sequential process of prediction followed by planning. Specifically, we design ego-to-agent, ego-to-map, and ego-to-BEV interaction mechanisms with hierarchical dynamic key objects attention to better model the interactions. The experiments on the nuScenes benchmark show that our approach outperforms state-of-the-art methods.
Submission history
From: Zhili Chen [view email][v1] Tue, 14 Nov 2023 11:53:24 UTC (3,174 KB)
[v2] Wed, 29 Nov 2023 07:53:47 UTC (3,174 KB)
[v3] Wed, 27 Mar 2024 04:00:07 UTC (3,027 KB)
[v4] Mon, 22 Jul 2024 03:57:03 UTC (3,227 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.