Computer Science > Computation and Language
[Submitted on 16 Nov 2023]
Title:Tracking the Newsworthiness of Public Documents
View PDFAbstract:Journalists must find stories in huge amounts of textual data (e.g. leaks, bills, press releases) as part of their jobs: determining when and why text becomes news can help us understand coverage patterns and help us build assistive tools. Yet, this is challenging because very few labelled links exist, language use between corpora is very different, and text may be covered for a variety of reasons. In this work we focus on news coverage of local public policy in the San Francisco Bay Area by the San Francisco Chronicle. First, we gather news articles, public policy documents and meeting recordings and link them using probabilistic relational modeling, which we show is a low-annotation linking methodology that outperforms other retrieval-based baselines. Second, we define a new task: newsworthiness prediction, to predict if a policy item will get covered. We show that different aspects of public policy discussion yield different newsworthiness signals. Finally we perform human evaluation with expert journalists and show our systems identify policies they consider newsworthy with 68% F1 and our coverage recommendations are helpful with an 84% win-rate.
Submission history
From: Alexander Spangher [view email][v1] Thu, 16 Nov 2023 10:05:26 UTC (3,043 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.