Computer Science > Computation and Language
[Submitted on 16 Nov 2023 (v1), last revised 16 Jun 2024 (this version, v4)]
Title:ConceptPsy:A Benchmark Suite with Conceptual Comprehensiveness in Psychology
View PDF HTML (experimental)Abstract:The critical field of psychology necessitates a comprehensive benchmark to enhance the evaluation and development of domain-specific Large Language Models (LLMs). Existing MMLU-type benchmarks, such as C-EVAL and CMMLU, include psychology-related subjects, but their limited number of questions and lack of systematic concept sampling strategies mean they cannot cover the concepts required in psychology. Consequently, despite their broad subject coverage, these benchmarks lack the necessary depth in the psychology domain, making them inadequate as psychology-specific evaluation suite. To address this issue, this paper presents ConceptPsy, designed to evaluate Chinese complex reasoning and knowledge abilities in psychology. ConceptPsy includes 12 core subjects and 1383 manually collected concepts. Specifically, we prompt GPT-4 to generate questions for each concept using carefully designed diverse prompts and hire professional psychologists to review these questions. To help to understand the fine-grained performances and enhance the weaknesses, we annotate each question with a chapter label and provide chapter-wise accuracy. Based on ConceptPsy, we evaluate a broad range of LLMs. We observe that, although some LLMs achieve similar accuracies on overall performances, they exhibit significant performance variations across different psychology concepts, even when they are models from the same series. We hope our work can facilitate the development of LLMs in the field of psychology.
Submission history
From: Junlei Zhang [view email][v1] Thu, 16 Nov 2023 12:43:18 UTC (1,432 KB)
[v2] Fri, 17 Nov 2023 03:17:05 UTC (1,432 KB)
[v3] Thu, 13 Jun 2024 13:56:20 UTC (9,461 KB)
[v4] Sun, 16 Jun 2024 11:33:03 UTC (8,303 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.