Computer Science > Artificial Intelligence
[Submitted on 31 Oct 2023]
Title:Automated Parliaments: A Solution to Decision Uncertainty and Misalignment in Language Models
View PDFAbstract:As AI takes on a greater role in the modern world, it is essential to ensure that AI models can overcome decision uncertainty and remain aligned with human morality and interests. This research paper proposes a method for improving the decision-making of language models (LMs) via Automated Parliaments (APs) - constructs made of AI delegates each representing a certain perspective. Delegates themselves consist of three AI models: generators, modifiers, and evaluators. We specify two mechanisms for producing optimal solutions: the Simultaneous Modification mechanism for response creation and an evaluation mechanism for fairly assessing solutions. The overall process begins when each generator creates a response aligned with its delegate's theory. The modifiers alter all other responses to make them more self-aligned. The evaluators collectively assess the best end response. Finally, the modifiers and generators learn from feedback from the evaluators. In our research, we tested the evaluation mechanism, comparing the use of single-value zero-shot prompting and AP few-shot prompting in evaluating morally contentious scenarios. We found that the AP architecture saw a 57.3% reduction in its loss value compared to the baseline. We conclude by discussing some potential applications of APs and specifically their potential impact when implemented as Automated Moral Parliaments.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.