Computer Science > Machine Learning
[Submitted on 16 Nov 2023]
Title:Algebraic Topological Networks via the Persistent Local Homology Sheaf
View PDFAbstract:In this work, we introduce a novel approach based on algebraic topology to enhance graph convolution and attention modules by incorporating local topological properties of the data. To do so, we consider the framework of sheaf neural networks, which has been previously leveraged to incorporate additional structure into graph neural networks' features and construct more expressive, non-isotropic messages. Specifically, given an input simplicial complex (e.g. generated by the cliques of a graph or the neighbors in a point cloud), we construct its local homology sheaf, which assigns to each node the vector space of its local homology. The intermediate features of our networks live in these vector spaces and we leverage the associated sheaf Laplacian to construct more complex linear messages between them. Moreover, we extend this approach by considering the persistent version of local homology associated with a weighted simplicial complex (e.g., built from pairwise distances of nodes embeddings). This i) solves the problem of the lack of a natural choice of basis for the local homology vector spaces and ii) makes the sheaf itself differentiable, which enables our models to directly optimize the topology of their intermediate features.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.