Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 20 Nov 2023 (v1), last revised 25 Sep 2024 (this version, v3)]
Title:High-performance Effective Scientific Error-bounded Lossy Compression with Auto-tuned Multi-component Interpolation
View PDF HTML (experimental)Abstract:Error-bounded lossy compression has been identified as a promising solution for significantly reducing scientific data volumes upon users' requirements on data distortion. For the existing scientific error-bounded lossy compressors, some of them (such as SPERR and FAZ) can reach fairly high compression ratios and some others (such as SZx, SZ, and ZFP) feature high compression speeds, but they rarely exhibit both high ratio and high speed meanwhile. In this paper, we propose HPEZ with newly-designed interpolations and quality-metric-driven auto-tuning, which features significantly improved compression quality upon the existing high-performance compressors, meanwhile being exceedingly faster than high-ratio compressors. The key contributions lie in the following points: (1) We develop a series of advanced techniques such as interpolation re-ordering, multi-dimensional interpolation, and natural cubic splines to significantly improve compression qualities with interpolation-based data prediction. (2) The auto-tuning module in HPEZ has been carefully designed with novel strategies, including but not limited to block-wise interpolation tuning, dynamic dimension freezing, and Lorenzo tuning. (3) We thoroughly evaluate HPEZ compared with many other compressors on six real-world scientific datasets. Experiments show that HPEZ outperforms other high-performance error-bounded lossy compressors in compression ratio by up to 140% under the same error bound, and by up to 360% under the same PSNR. In parallel data transfer experiments on the distributed database, HPEZ achieves a significant performance gain with up to 40% time cost reduction over the second-best compressor.
Submission history
From: Jinyang Liu [view email][v1] Mon, 20 Nov 2023 19:32:51 UTC (2,759 KB)
[v2] Wed, 13 Dec 2023 21:01:42 UTC (2,760 KB)
[v3] Wed, 25 Sep 2024 01:06:14 UTC (2,722 KB)
Current browse context:
cs.DC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.